By Jacob Alperin-Sheriff

Discrete Gaussian Sampling-Techniques and Dangers

04/21/2017

For key exchange-it's not!

- For key exchange-it's not!
- Can replace by centered binomial distribution ψ_k (New Hope etc).
- Sampleable with 2k uniform bits b_i, b'_i :

$$Y \leftarrow \sum_{i=0}^{k} (b_i - b'_i)$$

- For key exchange-it's not!
- Can replace by centered binomial distribution ψ_k (New Hope etc).
- Sampleable with 2k uniform bits b_i, b'_i :

$$Y \leftarrow \sum_{i=0}^{k} (b_i - b'_i)$$

Close enough for LWE - small number of samples

- For key exchange-it's not!
- Can replace by centered binomial distribution ψ_k (New Hope etc).
- Sampleable with 2k uniform bits b_i, b'_i :

$$Y \leftarrow \sum_{i=0}^{k} (b_i - b'_i)$$

- Close enough for LWE small number of samples
- For (SIS-based) signatures large number of samples per instance
- Can't just approximate

• Discrete Gaussian $D_{\mathbb{Z},\sigma}$ for $\sigma = 2$

- Discrete Gaussian $D_{\mathbb{Z},\sigma}$ for $\sigma = 2$
- Each point in Z chosen with probability proportional to

$$\rho_{\sigma}(x) = \exp(-x^2/2)$$

- Discrete Gaussian $D_{\mathbb{Z},\sigma}$ for $\sigma = 2$
- Each point in Z chosen with probability proportional to

 $\rho_{\sigma}(x) = \exp(-x^2/2)$

Discrete Gaussians maintain many properties of normal distribution

- Discrete Gaussian $D_{\mathbb{Z},\sigma}$ for $\sigma = 2$
- Each point in Z chosen with probability proportional to

 $\rho_{\sigma}(x) = \exp(-x^2/2)$

- Discrete Gaussians maintain many properties of normal distribution
- Sums of discrete Gaussians are still discrete Gaussians,

$$\sigma = \sqrt{\sigma_x^2 + \sigma_y^2}$$

- Discrete Gaussian $D_{\mathbb{Z},\sigma}$ for $\sigma = 2$
- Each point in Z chosen with probability proportional to

 $\rho_{\sigma}(x) = \exp(-x^2/2)$

- Discrete Gaussians maintain many properties of normal distribution
- Sums of discrete Gaussians are still discrete Gaussians,

$$\sigma = \sqrt{\sigma_x^2 + \sigma_y^2}$$

Actual sampling: ignore the (very unlikely) points outside $[-\tau\sigma, \tau\sigma]$

> Public key: uniform A, T := AS for short secret key S

- \blacktriangleright Public key: uniform A, $\mathbf{T}:=\mathbf{AS}$ for short secret key \mathbf{S}
- Cryptographic hash function H hashing input to short vectors

- ▶ Public key: uniform A, $\mathbf{T} := \mathbf{AS}$ for short secret key \mathbf{S}
- Cryptographic hash function H hashing input to short vectors
- **Sign**(μ):
 - **1** Sample $\mathbf{y} \leftarrow D_{\mathbb{Z}^n,\sigma}$.
 - **2** Hash $\mathbf{c} \leftarrow \mathsf{H}(\mathbf{Ay}, \mu)$.
 - **3** Apply rejection sampling to $\mathbf{z} := \mathbf{S}\mathbf{c} + \mathbf{y}$
 - **4** Output (\mathbf{z}, \mathbf{c}) as signature.

- Public key: uniform A, T := AS for short secret key S
- Cryptographic hash function H hashing input to short vectors
- ► **Sign**(*µ*):
 - **1** Sample $\mathbf{y} \leftarrow D_{\mathbb{Z}^n,\sigma}$.
 - **2** Hash $\mathbf{c} \leftarrow \mathsf{H}(\mathbf{Ay}, \mu)$.
 - **3** Apply rejection sampling to $\mathbf{z} := \mathbf{S}\mathbf{c} + \mathbf{y}$
 - **4** Output (**z**, **c**) as signature.
- Verify((z, c), μ):
 - 1 Verify that z is sufficiently short (under Euclidean norm)
 - **2** Verify that $H(Az Tc, \mu) = c$

- Public key: uniform A, T := AS for short secret key S
- Cryptographic hash function H hashing input to short vectors
- ► **Sign**(*µ*):
 - **1** Sample $\mathbf{y} \leftarrow D_{\mathbb{Z}^n,\sigma}$.
 - **2** Hash $\mathbf{c} \leftarrow \mathsf{H}(\mathbf{Ay}, \mu)$.
 - **3** Apply rejection sampling to $\mathbf{z} := \mathbf{S}\mathbf{c} + \mathbf{y}$
 - **4** Output (\mathbf{z}, \mathbf{c}) as signature.
- Verify((z, c), μ):
 - 1 Verify that z is sufficiently short (under Euclidean norm)
 - **2** Verify that $H(Az Tc, \mu) = c$
- Key Step: rejection sampling hides S contribution to signature.

Rejection Sampling

Standard general technique (due to von Neumann) to sample f(x) given access to easily sampleable g(x)

Rejection Sampling

Standard general technique (due to von Neumann) to sample f(x) given access to easily sampleable g(x)

 $\textbf{1 Sample } Y \leftarrow g$

Rejection Sampling

- Standard general technique (due to von Neumann) to sample f(x) given access to easily sampleable g(x)
- $\textbf{1} Sample Y \leftarrow g$
- **2** Accept Y with probability $\min(f(Y)/(Mg(Y), 1))$.
 - ★ Need $f(x) \le Mg(x)$ (except with negligible probability over x)

 For param σ, sample probabilities must be proportional to

$$\rho_{\sigma}(x) = \exp(-x^2/(2\sigma^2))$$

 For param σ, sample probabilities must be proportional to

$$\rho_{\sigma}(x) = \exp(-x^2/(2\sigma^2))$$

1 Sample $Y \leftarrow [-\tau\sigma, \tau\sigma]$ uniformly.

 For param σ, sample probabilities must be proportional to

$$\rho_{\sigma}(x) = \exp(-x^2/(2\sigma^2))$$

- **1** Sample $Y \leftarrow [-\tau\sigma, \tau\sigma]$ uniformly.
- 2 Accept with probability $\rho_{\sigma}(Y)/\rho_{\sigma(\mathbb{Z})}$, otherwise resample.

 For param σ, sample probabilities must be proportional to

$$p_{\sigma}(x) = \exp(-x^2/(2\sigma^2))$$

- **1** Sample $Y \leftarrow [-\tau\sigma, \tau\sigma]$ uniformly.
- **2** Accept with probability $\rho_{\sigma}(Y)/\rho_{\sigma(\mathbb{Z})}$, otherwise resample.
- Problems:

f

- ★ High rejection rate
- * Computing ho_{σ} to high precision is expensive

Bernoulli Rejection Sampling [DDLL' 12]

(a) from uniform distribution (repetition rate ≈ 10)

(b) from our adapted distribution (repetition rate $\approx 1.47)$

• "Core sampler" of $D_{\sigma_2}^+$ where $\sigma_2 = \sqrt{1/(2\ln(2))}$.

$$\star \ \rho_{\sigma_2}(x) = 2^{-x^2}, x \in \mathbb{Z}$$

* In DDLL'12, binary-style rejection sampler given access to uniform bits.

Bernoulli Rejection-Core Sampler

Sampling $D_{\sigma_2}^+$

Draw random bit b. if random bit b = 0 then return 0 for i = 1 to ∞ do Draw random bits b_1, \ldots, b_k for k = 2i - 1if $b_1 \ldots, b_{k-1} \neq 0 \ldots 0$ then restart if $b_k = 0$ then return i

Bernoulli Rejection-Core Sampler

Sampling $D_{\sigma_2}^+$

Draw random bit b. if random bit b = 0 then return 0 for i = 1 to ∞ do Draw random bits b_1, \ldots, b_k for k = 2i - 1if $b_1 \ldots, b_{k-1} \neq 0 \ldots 0$ then restart if $b_k = 0$ then return i

• Why it works: binary expansion of $\rho_{\sigma_2}(\{0,\ldots,j\})$ is

$$\rho_{\sigma_2}(0,\ldots,j) = \sum_{i=0}^{j} 2^{-i^2} = 1.100100001 \underbrace{0\ldots0}_{6} 1\ldots \underbrace{0\ldots0}_{2(j-1)} 1$$

Bernoulli Rejection (Full Algorithm)

Sampling $D^+_{k\sigma_2}$, $k \in \mathbb{Z}$

```
Sample x \leftarrow D_{\sigma_2}^+.
Sample y \leftarrow \{0, \dots, k-1\}.
Let z \leftarrow kx + y.
Sample b with probability \exp(-y(y + 2kx)/(2(k\sigma_2)^2))
if b = 0 then restart.
return z.
```

Bernoulli Rejection (Full Algorithm)

Sampling $D_{k\sigma_2}^+$, $k \in \mathbb{Z}$

```
Sample x \leftarrow D_{\sigma_2}^+.
Sample y \leftarrow \{0, \dots, k-1\}.
Let z \leftarrow kx + y.
Sample b with probability \exp(-y(y + 2kx)/(2(k\sigma_2)^2))
if b = 0 then restart.
return z.
```

Sampling the exponential distribution can be done efficiently

Bernoulli Rejection (Full Algorithm)

Sampling $D_{k\sigma_2}^+$, $k \in \mathbb{Z}$

```
Sample x \leftarrow D_{\sigma_2}^+.
Sample y \leftarrow \{0, \dots, k-1\}.
Let z \leftarrow kx + y.
Sample b with probability \exp(-y(y + 2kx)/(2(k\sigma_2)^2))
if b = 0 then restart.
return z.
```

Sampling the exponential distribution can be done efficiently

- ★ Takes time $O(\log k)$.
- ★ Needs small lookup table with

$$\mathsf{ET}[i] := \exp(-2^{i}/(2(k\sigma_{2})^{2})), i \in [0, O(\log k)]$$

Bernoulli Rejection-Timing Attacks

Sampling $D_{\sigma_2}^+$

Draw random bit b. if random bit b = 0 then return 0 for i = 1 to ∞ do Draw random bits b_1, \ldots, b_k for k = 2i - 1if $b_1 \ldots, b_{k-1} \neq 0 \ldots 0$ then restart if $b_k = 0$ then return i

Problem-Information Revealed by Timing Attacks!

Bernoulli Rejection-Timing Attacks

Sampling $D_{\sigma_2}^+$

Draw random bit b. if random bit b = 0 then return 0 for i = 1 to ∞ do Draw random bits b_1, \ldots, b_k for k = 2i - 1if $b_1 \ldots, b_{k-1} \neq 0 \ldots 0$ then restart if $b_k = 0$ then return i

Problem-Information Revealed by Timing Attacks!

When for loop not entered, algorithm always outputs 0

Bernoulli Rejection-Timing Attacks

Sampling $D_{\sigma_2}^+$

Draw random bit b. if random bit b = 0 then return 0 for i = 1 to ∞ do Draw random bits b_1, \ldots, b_k for k = 2i - 1if $b_1 \ldots, b_{k-1} \neq 0 \ldots 0$ then restart if $b_k = 0$ then return i

Problem-Information Revealed by Timing Attacks!

- When for loop not entered, algorithm always outputs 0
- Algorithm for $D_{\sigma_2}^+$ is slow in worst case.
- Can mitigate with batching

• For each $y \in [-\tau\sigma, \tau\sigma]$, compute λ bit precision $p_y := \Pr[x \le y \mid x \leftarrow D_\sigma]$

For each
$$y \in [-\tau\sigma, \tau\sigma]$$
, compute λ bit precision
$$p_y := \Pr[x \le y \mid x \leftarrow D_\sigma]$$

Store in (large) table

- For each $y \in [-\tau\sigma, \tau\sigma]$, compute λ bit precision $p_y := \Pr[x \le y \mid x \leftarrow D_\sigma]$
- Store in (large) table
- To sample D_{σ} :
 - ★ Sample (sufficient approximation of) uniform $r \in [0, 1)$

- For each $y \in [-\tau\sigma, \tau\sigma]$, compute λ bit precision $p_y := \Pr[x \le y \mid x \leftarrow D_\sigma]$
- Store in (large) table
- To sample D_{σ} :
 - ★ Sample (sufficient approximation of) uniform $r \in [0, 1)$
 - ★ Binary search to find $y \in [-\tau\sigma, \tau\sigma]$ such that $r \in [p_{y-1}, p_y)$.

- For each $y \in [-\tau\sigma, \tau\sigma]$, compute λ bit precision $p_y := \Pr[x \le y \mid x \leftarrow D_\sigma]$
- Store in (large) table
- To sample D_{σ} :
 - ★ Sample (sufficient approximation of) uniform $r \in [0, 1)$
 - ★ Binary search to find $y \in [-\tau\sigma, \tau\sigma]$ such that $r \in [p_{y-1}, p_y)$.
- Can be sped up with additional guide table

CDT Sampling

- For each $y \in [-\tau\sigma, \tau\sigma]$, compute λ bit precision $p_y := \Pr[x \le y \mid x \leftarrow D_\sigma]$
- Store in (large) table
- To sample D_{σ} :
 - ★ Sample (sufficient approximation of) uniform $r \in [0, 1)$
 - ★ Binary search to find $y \in [-\tau\sigma, \tau\sigma]$ such that $r \in [p_{y-1}, p_y)$.
- Can be sped up with additional guide table
- Problems: Table is quite large; infeasible for constrained devices.

Val	Prob (binary)
1	0.10010
2	0.00011
3	0.01011

Val	Prob (binary)
1	0. 1 0010
2	0. 0 0011
3	0. 0 1011

Val	Prob (binary)
1	0.1 0 010
2	0.0 0 011
3	0.0 1 011

Val	Prob (binary)	
1	0.10 0 10	
2	0.00 0 11	
3	0.01 0 11	

Val	Prob (binary)
1	0.10010
2	0.00011
3	0.01011

Designed to minimize (average) number of bits required to sample

2		
	Val	Prob (binary
	1	0.10010
	2	0.00011
(START) (3) (1)	3	0.01011

- Designed to minimize (average) number of bits required to sample
- ▶ Theorem: Knuth-Yao requires at most 2 more than entropy of dist.

х	$\sigma_{10}(x)$	Binary expansion of $\sigma_{10}(x)$
0	0.01994711	0.00000101000110110100
± 1	0.03969525	0.00001010001010010111
± 10	0.02419707	0.00000110001100011100
± 20	0.00539909	0.00000001011000011101
± 30	0.00044318	0.00000000000111010001
± 40	0.00001338	0.00000000000000001110

Need to store table of probabilities, which is large.

х	$\sigma_{10}(x)$	Binary expansion of $\sigma_{10}(x)$
0	0.01994711	0.00000101000110110100
± 1	0.03969525	0.00001010001010010111
± 10	0.02419707	0.00000110001100011100
± 20	0.00539909	0.00000001011000011101
± 30	0.00044318	0.00000000000111010001
± 40	0.00001338	0.00000000000000001110

Need to store table of probabilities, which is large.

Can cut down by performing Knuth-Yao in "blocks"

х	$\sigma_{10}(x)$	Binary expansion of $\sigma_{10}(x)$
0	0.01994711	0.00000101000110110100
± 1	0.03969525	0.00001010001010010111
± 10	0.02419707	0.00000110001100011100
± 20	0.00539909	0.00000001011000011101
± 30	0.00044318	0.0000000000111010001
± 40	0.00001338	0.00000000000000001110

- Need to store table of probabilities, which is large.
- Can cut down by performing Knuth-Yao in "blocks"
 - 1 Partition into disjoint sets with almost equivalent probabilities

х	$\sigma_{10}(x)$	Binary expansion of $\sigma_{10}(x)$
0	0.01994711	0.00000101000110110100
± 1	0.03969525	0.00001010001010010111
± 10	0.02419707	0.00000110001100011100
± 20	0.00539909	0.00000001011000011101
± 30	0.00044318	0.0000000000111010001
± 40	0.00001338	0.00000000000000001110

- Need to store table of probabilities, which is large.
- Can cut down by performing Knuth-Yao in "blocks"
 - 1 Partition into disjoint sets with almost equivalent probabilities
 - Pick a set

х	$\sigma_{10}(x)$	Binary expansion of $\sigma_{10}(x)$
0	0.01994711	0.00000101000110110100
± 1	0.03969525	0.00001010001010010111
± 10	0.02419707	0.00000110001100011100
± 20	0.00539909	0.00000001011000011101
± 30	0.00044318	0.0000000000111010001
± 40	0.00001338	0.00000000000000001110

- Need to store table of probabilities, which is large.
- Can cut down by performing Knuth-Yao in "blocks"
 - 1 Partition into disjoint sets with almost equivalent probabilities
 - 2 Pick a set
 - 8 Perform Knuth-Yao within the set

х	$\sigma_{10}(x)$	Binary expansion of $\sigma_{10}(x)$
0	0.01994711	0.00000101000110110100
± 1	0.03969525	0.00001010001010010111
± 10	0.02419707	0.00000110001100011100
± 20	0.00539909	0.00000001011000011101
± 30	0.00044318	0.0000000000111010001
± 40	0.00001338	0.00000000000000001110

- Need to store table of probabilities, which is large.
- Can cut down by performing Knuth-Yao in "blocks"
 - 1 Partition into disjoint sets with almost equivalent probabilities
 - 2 Pick a set
 - 8 Perform Knuth-Yao within the set
- Knuth-Yao is not constant time!
- Can be mitigated by batching

 Partition density function into m rectangles of equal probability

- Partition density function into m rectangles of equal probability
- 2 Choose a rectangle unif. at random

- Partition density function into m rectangles of equal probability
- 2 Choose a rectangle unif. at random
- **3** Choose point $x' \leftarrow [0, x_i]$

- Partition density function into m rectangles of equal probability
- 2 Choose a rectangle unif. at random
- **3** Choose point $x' \leftarrow [0, x_i]$
 - 1 If $x' \leq x_{i-1}$, accept.
 - 2 Otherwise, do rejection sampling.

- Partition density function into m rectangles of equal probability
- 2 Choose a rectangle unif. at random
- **3** Choose point $x' \leftarrow [0, x_i]$
 - 1 If $x' \leq x_{i-1}$, accept.
 - **2** Otherwise, do rejection sampling.
 - Sampling in discrete case requires some care

- Partition density function into m rectangles of equal probability
- 2 Choose a rectangle unif. at random
- **3** Choose point $x' \leftarrow [0, x_i]$
 - 1 If $x' \leq x_{i-1}$, accept.
 - **2** Otherwise, do rejection sampling.
 - Sampling in discrete case requires some care
 - * Partitioning can't be done by "area", but by probability

- Partition density function into m rectangles of equal probability
- 2 Choose a rectangle unif. at random
- **3** Choose point $x' \leftarrow [0, x_i]$
 - 1 If $x' \leq x_{i-1}$, accept.
 - Otherwise, do rejection sampling.
 - Sampling in discrete case requires some care
 - * Partitioning can't be done by "area", but by probability
 - No clear vulnerability to timing attacks.

Technique to make algorithm (e.g. Knuth-Yao) constant time

- Technique to make algorithm (e.g. Knuth-Yao) constant time
- Signatures need large (linear) number of Gaussian samples anyway

- Technique to make algorithm (e.g. Knuth-Yao) constant time
- Signatures need large (linear) number of Gaussian samples anyway
- Use Hoeffding-type bounds
 - \star Each sample takes on average c random bits, max of n WHP
 - $\star\,$ All n samples take combined time cn on average
 - * With overwhelming prob, all n samples take at most cn + n time.

- Technique to make algorithm (e.g. Knuth-Yao) constant time
- Signatures need large (linear) number of Gaussian samples anyway
- Use Hoeffding-type bounds
 - \star Each sample takes on average c random bits, max of n WHP
 - $\star\,$ All n samples take combined time cn on average
 - ***** With overwhelming prob, all n samples take at most cn + n time.
- Have algorithm run in "time" proportional to cn + n being used.

- Technique to make algorithm (e.g. Knuth-Yao) constant time
- Signatures need large (linear) number of Gaussian samples anyway
- Use Hoeffding-type bounds
 - \star Each sample takes on average c random bits, max of n WHP
 - $\star\,$ All n samples take combined time cn on average
 - ***** With overwhelming prob, all n samples take at most cn + n time.
- Have algorithm run in "time" proportional to cn + n being used.
- Pitfall: Making sure implementation is constant time is extremely hard

Algorithm 1: A sampling algorithm for $\mathcal{D}_{\mathbb{Z}+c,\sigma}$ for arbitrary c and σ . Definitions for z_i and σ_i as in (3) and (4) and $\bar{\sigma}$ as in (5). SAMPLEB is an arbitrary base sampler for fixed σ_0 and small number of cosets $c + \mathbb{Z}$, where $c \in \mathbb{Z}/b$.

$$z_{i} = \lfloor \sigma_{i-1} / \sqrt{2\eta_{\epsilon}(\mathbb{Z})} \rfloor, \sigma_{i}^{2} = (z_{i}^{2} + \max((z_{i} - 1)^{2}, 1))\sigma_{i-1}^{2}$$

New algorithm with constant-time online phase

Algorithm 1: A sampling algorithm for $\mathcal{D}_{\mathbb{Z}+c,\sigma}$ for arbitrary c and σ . Definitions for z_i and σ_i as in (3) and (4) and $\bar{\sigma}$ as in (5). SAMPLEB is an arbitrary base sampler for fixed σ_0 and small number of cosets $c + \mathbb{Z}$, where $c \in \mathbb{Z}/b$.

$$z_{i} = \lfloor \sigma_{i-1} / \sqrt{2\eta_{\epsilon}(\mathbb{Z})} \rfloor, \sigma_{i}^{2} = (z_{i}^{2} + \max((z_{i} - 1)^{2}, 1))\sigma_{i-1}^{2}$$

- New algorithm with constant-time online phase
- Works by recursively combining samples with smaller σs.

Algorithm 1: A sampling algorithm for $\mathcal{D}_{\mathbb{Z}+c,\sigma}$ for arbitrary c and σ . Definitions for z_i and σ_i as in (3) and (4) and $\bar{\sigma}$ as in (5). SAMPLEB is an arbitrary base sampler for fixed σ_0 and small number of cosets $c + \mathbb{Z}$, where $c \in \mathbb{Z}/b$.

$$z_{i} = \lfloor \sigma_{i-1} / \sqrt{2\eta_{\epsilon}(\mathbb{Z})} \rfloor, \sigma_{i}^{2} = (z_{i}^{2} + \max((z_{i} - 1)^{2}, 1))\sigma_{i-1}^{2}$$

- New algorithm with constant-time online phase
- Works by recursively combining samples with smaller σs.
- Assumes access to $D_{\mathbb{Z}+c,\sigma_0}$ with small $\sigma_0 \ge \sqrt{2}\eta_{\epsilon}(\mathbb{Z})$

Algorithm 1: A sampling algorithm for $\mathcal{D}_{\mathbb{Z}+c,\sigma}$ for arbitrary c and σ . Definitions for z_i and σ_i as in (3) and (4) and $\bar{\sigma}$ as in (5). SAMPLEB is an arbitrary base sampler for fixed σ_0 and small number of cosets $c + \mathbb{Z}$, where $c \in \mathbb{Z}/b$.

$$z_{i} = \lfloor \sigma_{i-1} / \sqrt{2\eta_{\epsilon}(\mathbb{Z})} \rfloor, \sigma_{i}^{2} = (z_{i}^{2} + \max((z_{i} - 1)^{2}, 1))\sigma_{i-1}^{2}$$

- New algorithm with constant-time online phase
- Works by recursively combining samples with smaller σ s.
- Assumes access to $D_{\mathbb{Z}+c,\sigma_0}$ with small $\sigma_0 \ge \sqrt{2}\eta_{\epsilon}(\mathbb{Z})$
 - Authors suggest generating these offline in "idle times"
 - * Doesn't seem plausible for constrained devices
 - Relies on idle time (frequent queries could eliminate it)

Walter-Micciancio (Runtime)

Figure 1: Time memory trade-off for combination sampler ("Convolved KV") and discrete Ziggurat compared to Bernoulli-type sampling for $\sigma \in \{2^5, 2^{10}, 2^{14}, 2^{17}\}\sqrt{2\pi}$. Knuth-Yao corresponds to right most point of "Convolved KY".

► Table access is constant-time. Or is it??

- ► Table access is constant-time. Or is it??
- FLUSH+RELOAD attack uses clflush instruction (on x86-64)

- Table access is constant-time. Or is it??
- FLUSH+RELOAD attack uses clflush instruction (on x86-64)
 - 1 Evicts memory block from cache,
 - Lets victim execute
 - **3** Measures time to access same memory block

- Table access is constant-time. Or is it??
- FLUSH+RELOAD attack uses clflush instruction (on x86-64)
 - 1 Evicts memory block from cache,
 - 2 Lets victim execute
 - **3** Measures time to access same memory block
- Flush, Gauss and Reload uses this on Gaussian sampling in BLISS

- Table access is constant-time. Or is it??
- FLUSH+RELOAD attack uses clflush instruction (on x86-64)
 - 1 Evicts memory block from cache,
 - 2 Lets victim execute
 - **3** Measures time to access same memory block
- Flush, Gauss and Reload uses this on Gaussian sampling in BLISS
- Requires roughly 3000 signatures

- Table access is constant-time. Or is it??
- FLUSH+RELOAD attack uses clflush instruction (on x86-64)
 - 1 Evicts memory block from cache,
 - 2 Lets victim execute
 - **3** Measures time to access same memory block
- Flush, Gauss and Reload uses this on Gaussian sampling in BLISS
- Requires roughly 3000 signatures
- FLUSH+RELOAD must be run on same system as crypto

Seems like it should be easier for SIS-based cryptography

- Seems like it should be easier for SIS-based cryptography
 - $\star\,$ Unlike LWE, SIS problem is not defined with a noise distribution

- Seems like it should be easier for SIS-based cryptography
 - $\star\,$ Unlike LWE, SIS problem is not defined with a noise distribution
 - ★ Just need to find short solution

- Seems like it should be easier for SIS-based cryptography
 - $\star\,$ Unlike LWE, SIS problem is not defined with a noise distribution
 - ★ Just need to find short solution
- Discrete Gaussians do give tightest bounds, but how much tighter?

- Seems like it should be easier for SIS-based cryptography
 - ★ Unlike LWE, SIS problem is not defined with a noise distribution
 - ★ Just need to find short solution
- Discrete Gaussians do give tightest bounds, but how much tighter?
- Would be nice to see concrete implementations without them