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Why is Discrete Gaussian Sampling Necessary?

I For key exchange-it’s not!

I Can replace by centered binomial distribution ψk (New Hope etc).

I Sampleable with 2k uniform bits bi, b
′
i:

Y ←
k∑
i=0

(bi − b′i)

I Close enough for LWE - small number of samples

I For (SIS-based) signatures - large number of samples per instance

I Can’t just approximate
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Discrete Gaussian Distribution

I Discrete Gaussian DZ,σ for
σ = 2

I Each point in Z chosen with
probability proportional to

ρσ(x) = exp(−x2/2)
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I Discrete Gaussians maintain many properties of normal distribution

I Sums of discrete Gaussians are still discrete Gaussians,

σ =
√
σ2x + σ2y

I Actual sampling: ignore the (very unlikely) points outside [−τσ, τσ]
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“Basic” SIS-based Signature Scheme [L’12]

I Public key: uniform A, T := AS for short secret key S

I Cryptographic hash function H hashing input to short vectors

I Sign(µ):

1 Sample y← DZn,σ.

2 Hash c← H(Ay,µ).

3 Apply rejection sampling to z := Sc+ y

4 Output (z, c) as signature.

I Verify((z, c),µ):

1 Verify that z is sufficiently short (under Euclidean norm)

2 Verify that H(Az−Tc,µ) = c

I Key Step: rejection sampling – hides S contribution to signature.
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Rejection Sampling

I Standard general technique (due to von Neumann) to sample f(x)
given access to easily sampleable g(x)

1 Sample Y ← g

2 Accept Y with probability min(f(Y )/(Mg(Y ), 1).

F Need f(x) ≤Mg(x) (except with negligible probability over x)
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Rejection Sampling for Discrete Gaussian Distributions

I For param σ, sample
probabilities must be
proportional to

ρσ(x) = exp(−x2/(2σ2))

1 Sample Y ← [−τσ, τσ] uniformly.

2 Accept with probability ρσ(Y )/ρσ(Z), otherwise resample.

I Problems:

F High rejection rate

F Computing ρσ to high precision is expensive
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Bernoulli Rejection Sampling [DDLL’ 12]

I “Core sampler” of D+
σ2 where σ2 =

√
1/(2 ln(2)).

F ρσ2(x) = 2−x
2

,x ∈ Z
F In DDLL’12, binary-style rejection sampler given access to uniform bits.
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Bernoulli Rejection-Core Sampler

Sampling D+
σ2

Draw random bit b.
if random bit b = 0 then return 0
for i = 1 to ∞ do

Draw random bits b1, . . . , bk for k = 2i− 1
if b1 . . . , bk−1 6= 0 . . . 0 then restart
if bk = 0 then return i

I Why it works: binary expansion of ρσ2({0, . . . , j}) is

ρσ2(0, . . . , j) =

j∑
i=0

2−i
2
= 1.100100001 0 . . . 0︸ ︷︷ ︸

6

1 . . . 0 . . . 0︸ ︷︷ ︸
2(j−1)

1
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Bernoulli Rejection (Full Algorithm)

Sampling D+
kσ2

, k ∈ Z
Sample x← D+

σ2 .
Sample y ← {0, . . . , k − 1}.
Let z ← kx+ y.
Sample b with probability exp(−y(y + 2kx)/(2(kσ2)

2))
if b = 0 then restart.
return z.

I Sampling the exponential distribution can be done efficiently

F Takes time O(log k).

F Needs small lookup table with

ET[i] := exp(−2i/(2(kσ2)2)), i ∈ [0,O(log k)]
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Bernoulli Rejection-Timing Attacks

Sampling D+
σ2

Draw random bit b.
if random bit b = 0 then return 0
for i = 1 to ∞ do

Draw random bits b1, . . . , bk for k = 2i− 1
if b1 . . . , bk−1 6= 0 . . . 0 then restart
if bk = 0 then return i

I Problem-Information Revealed by Timing Attacks!

I When for loop not entered, algorithm always outputs 0

I Algorithm for D+
σ2 is slow in worst case.

I Can mitigate with batching
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CDT Sampling

I For each y ∈ [−τσ, τσ], compute λ bit precision

py := Pr[x ≤ y | x← Dσ]

I Store in (large) table

I To sample Dσ:

F Sample (sufficient approximation of) uniform r ∈ [0, 1)

F Binary search to find y ∈ [−τσ, τσ] such that r ∈ [py−1, py).

I Can be sped up with additional guide table

I Problems: Table is quite large; infeasible for constrained devices.

11 / 19



CDT Sampling

I For each y ∈ [−τσ, τσ], compute λ bit precision

py := Pr[x ≤ y | x← Dσ]

I Store in (large) table

I To sample Dσ:

F Sample (sufficient approximation of) uniform r ∈ [0, 1)

F Binary search to find y ∈ [−τσ, τσ] such that r ∈ [py−1, py).

I Can be sped up with additional guide table

I Problems: Table is quite large; infeasible for constrained devices.

11 / 19



CDT Sampling

I For each y ∈ [−τσ, τσ], compute λ bit precision

py := Pr[x ≤ y | x← Dσ]

I Store in (large) table

I To sample Dσ:
F Sample (sufficient approximation of) uniform r ∈ [0, 1)

F Binary search to find y ∈ [−τσ, τσ] such that r ∈ [py−1, py).

I Can be sped up with additional guide table

I Problems: Table is quite large; infeasible for constrained devices.

11 / 19



CDT Sampling

I For each y ∈ [−τσ, τσ], compute λ bit precision

py := Pr[x ≤ y | x← Dσ]

I Store in (large) table

I To sample Dσ:
F Sample (sufficient approximation of) uniform r ∈ [0, 1)

F Binary search to find y ∈ [−τσ, τσ] such that r ∈ [py−1, py).

I Can be sped up with additional guide table

I Problems: Table is quite large; infeasible for constrained devices.

11 / 19



CDT Sampling

I For each y ∈ [−τσ, τσ], compute λ bit precision

py := Pr[x ≤ y | x← Dσ]

I Store in (large) table

I To sample Dσ:
F Sample (sufficient approximation of) uniform r ∈ [0, 1)

F Binary search to find y ∈ [−τσ, τσ] such that r ∈ [py−1, py).

I Can be sped up with additional guide table

I Problems: Table is quite large; infeasible for constrained devices.

11 / 19



CDT Sampling

I For each y ∈ [−τσ, τσ], compute λ bit precision

py := Pr[x ≤ y | x← Dσ]

I Store in (large) table

I To sample Dσ:
F Sample (sufficient approximation of) uniform r ∈ [0, 1)

F Binary search to find y ∈ [−τσ, τσ] such that r ∈ [py−1, py).

I Can be sped up with additional guide table

I Problems: Table is quite large; infeasible for constrained devices.

11 / 19



Knuth-Yao Sampling

START
1

I
3

I

I
3

2

I
1

I
3

2

Val Prob (binary)
1 0.10010

2 0.00011

3 0.01011

I Designed to minimize (average) number of bits required to sample

I Theorem: Knuth-Yao requires at most 2 more than entropy of dist.
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Knuth-Yao Sampling (Gaussians) [Dwarakanath/Galbraith]

x σ10(x) Binary expansion of σ10(x)

0 0.01994711 0.00000101000110110100
±1 0.03969525 0.00001010001010010111
±10 0.02419707 0.00000110001100011100
±20 0.00539909 0.00000001011000011101
±30 0.00044318 0.00000000000111010001
±40 0.00001338 0.00000000000000001110

I Need to store table of probabilities, which is large.

I Can cut down by performing Knuth-Yao in “blocks”

1 Partition into disjoint sets with almost equivalent probabilities

2 Pick a set

3 Perform Knuth-Yao within the set

I Knuth-Yao is not constant time!

I Can be mitigated by batching
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Discrete Ziggurat Sampling

1 Partition density function into m
rectangles of equal probability

2 Choose a rectangle unif. at random

3 Choose point x′ ← [0,xi]

1 If x′ ≤ xi−1, accept.

2 Otherwise, do rejection sampling.

I Sampling in discrete case requires some care

F Partitioning can’t be done by “area”, but by probability

I No clear vulnerability to timing attacks.
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Batching

I Technique to make algorithm (e.g. Knuth-Yao) constant time

I Signatures need large (linear) number of Gaussian samples anyway

I Use Hoeffding-type bounds

F Each sample takes on average c random bits, max of n WHP

F All n samples take combined time cn on average

F With overwhelming prob, all n samples take at most cn+ n time.

I Have algorithm run in “time” proportional to cn+ n being used.

I Pitfall: Making sure implementation is constant time is extremely hard
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Walter-Micciancio Sampling

zi = bσi−1/
√
2ηε(Z)c,σ2i = (z2i +max((zi − 1)2, 1))σ2i−1

I New algorithm with constant-time online phase

I Works by recursively combining samples with smaller σs.

I Assumes access to DZ+c,σ0with small σ0 ≥
√
2ηε(Z)

F Authors suggest generating these offline in “idle times”

F Doesn’t seem plausible for constrained devices

F Relies on idle time (frequent queries could eliminate it)
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Walter-Micciancio (Runtime)
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Even Tables Are Vulnerable - To Cache Attacks

I Table access is constant-time. Or is it??

I FLUSH+RELOAD attack uses clflush instruction (on x86-64)

1 Evicts memory block from cache,

2 Lets victim execute

3 Measures time to access same memory block

I Flush, Gauss and Reload uses this on Gaussian sampling in BLISS

I Requires roughly 3000 signatures

I FLUSH+RELOAD must be run on same system as crypto
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Can We Avoid Discrete Gaussians?

I Seems like it should be easier for SIS-based cryptography

F Unlike LWE, SIS problem is not defined with a noise distribution

F Just need to find short solution

I Discrete Gaussians do give tightest bounds, but how much tighter?

I Would be nice to see concrete implementations without them
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