By Jacob Alperin-Sheriff

Discrete Gaussian Sampling-Techniques and Dangers

$$
04 / 21 / 2017
$$

Why is Discrete Gaussian Sampling Necessary?

- For key exchange-it's not!

Why is Discrete Gaussian Sampling Necessary?

- For key exchange-it's not!
- Can replace by centered binomial distribution ψ_{k} (New Hope etc).
- Sampleable with $2 k$ uniform bits b_{i}, b_{i}^{\prime} :

$$
Y \leftarrow \sum_{i=0}^{k}\left(b_{i}-b_{i}^{\prime}\right)
$$

Why is Discrete Gaussian Sampling Necessary?

- For key exchange-it's not!
- Can replace by centered binomial distribution ψ_{k} (New Hope etc).
- Sampleable with $2 k$ uniform bits b_{i}, b_{i}^{\prime} :

$$
Y \leftarrow \sum_{i=0}^{k}\left(b_{i}-b_{i}^{\prime}\right)
$$

- Close enough for LWE - small number of samples

Why is Discrete Gaussian Sampling Necessary?

- For key exchange-it's not!
- Can replace by centered binomial distribution ψ_{k} (New Hope etc).
- Sampleable with $2 k$ uniform bits b_{i}, b_{i}^{\prime} :

$$
Y \leftarrow \sum_{i=0}^{k}\left(b_{i}-b_{i}^{\prime}\right)
$$

- Close enough for LWE - small number of samples
- For (SIS-based) signatures - large number of samples per instance
- Can't just approximate

Discrete Gaussian Distribution

- Discrete Gaussian $D_{\mathbb{Z}, \sigma}$ for $\sigma=2$

Discrete Gaussian Distribution

- Discrete Gaussian $D_{\mathbb{Z}, \sigma}$ for $\sigma=2$
- Each point in \mathbb{Z} chosen with probability proportional to

$$
\rho_{\sigma}(x)=\exp \left(-x^{2} / 2\right)
$$

Discrete Gaussian Distribution

- Discrete Gaussian $D_{\mathbb{Z}, \sigma}$ for $\sigma=2$
- Each point in \mathbb{Z} chosen with probability proportional to

$$
\rho_{\sigma}(x)=\exp \left(-x^{2} / 2\right)
$$

- Discrete Gaussians maintain many properties of normal distribution

Discrete Gaussian Distribution

- Discrete Gaussian $D_{\mathbb{Z}, \sigma}$ for $\sigma=2$
- Each point in \mathbb{Z} chosen with probability proportional to

$$
\rho_{\sigma}(x)=\exp \left(-x^{2} / 2\right)
$$

- Discrete Gaussians maintain many properties of normal distribution
- Sums of discrete Gaussians are still discrete Gaussians,

$$
\sigma=\sqrt{\sigma_{x}^{2}+\sigma_{y}^{2}}
$$

Discrete Gaussian Distribution

- Discrete Gaussian $D_{\mathbb{Z}, \sigma}$ for $\sigma=2$
- Each point in \mathbb{Z} chosen with probability proportional to

$$
\rho_{\sigma}(x)=\exp \left(-x^{2} / 2\right)
$$

- Discrete Gaussians maintain many properties of normal distribution
- Sums of discrete Gaussians are still discrete Gaussians,

$$
\sigma=\sqrt{\sigma_{x}^{2}+\sigma_{y}^{2}}
$$

- Actual sampling: ignore the (very unlikely) points outside $[-\tau \sigma, \tau \sigma]$

"Basic" SIS-based Signature Scheme [L'12]

- Public key: uniform A, T := AS for short secret key S

"Basic" SIS-based Signature Scheme [L'12]

- Public key: uniform A, T $:=$ AS for short secret key S
- Cryptographic hash function H hashing input to short vectors

"Basic" SIS-based Signature Scheme [L'12]

- Public key: uniform A, T :=AS for short secret key S
- Cryptographic hash function H hashing input to short vectors
- $\operatorname{Sign}(\mu)$:
(1) Sample $\mathrm{y} \leftarrow D_{\mathbb{Z}^{n}, \sigma}$.
(2) Hash $\mathrm{c} \leftarrow \mathrm{H}(\mathrm{Ay}, \mu)$.
(3) Apply rejection sampling to $\mathrm{z}:=\mathrm{Sc}+\mathrm{y}$
(4) Output (z, c) as signature.

"Basic" SIS-based Signature Scheme [L'12]

- Public key: uniform A, T := AS for short secret key S
- Cryptographic hash function H hashing input to short vectors
- $\operatorname{Sign}(\mu)$:
(1) Sample $\mathrm{y} \leftarrow D_{\mathbb{Z}^{n}, \sigma}$.
(2) Hash $\mathrm{c} \leftarrow \mathrm{H}(\mathrm{Ay}, \mu)$.
(3) Apply rejection sampling to $\mathrm{z}:=\mathrm{Sc}+\mathrm{y}$
(4) Output (z, c) as signature.
- Verify $((\mathbf{z}, \mathbf{c}), \mu)$:
(1) Verify that z is sufficiently short (under Euclidean norm)
(2) Verify that $\mathrm{H}(\mathbf{A z}-\mathbf{T c}, \mu)=\mathbf{c}$

"Basic" SIS-based Signature Scheme [L'12]

- Public key: uniform A, T := AS for short secret key S
- Cryptographic hash function H hashing input to short vectors
- $\operatorname{Sign}(\mu)$:
(1) Sample $\mathrm{y} \leftarrow D_{\mathbb{Z}^{n}, \sigma}$.
(2) Hash $\mathrm{c} \leftarrow \mathrm{H}(\mathrm{Ay}, \mu)$.
(3) Apply rejection sampling to $\mathrm{z}:=\mathrm{Sc}+\mathrm{y}$
(4) Output (z, c) as signature.
- Verify $((\mathbf{z}, \mathbf{c}), \mu)$:
(1) Verify that z is sufficiently short (under Euclidean norm)
(2) Verify that $\mathrm{H}(\mathbf{A z}-\mathbf{T c}, \mu)=\mathbf{c}$
- Key Step: rejection sampling - hides S contribution to signature.

Rejection Sampling

- Standard general technique (due to von Neumann) to sample $f(x)$ given access to easily sampleable $g(x)$

Rejection Sampling

- Standard general technique (due to von Neumann) to sample $f(x)$ given access to easily sampleable $g(x)$
(1) Sample $Y \leftarrow g$

Rejection Sampling

- Standard general technique (due to von Neumann) to sample $f(x)$ given access to easily sampleable $g(x)$
(1) Sample $Y \leftarrow g$

2 Accept Y with probability $\min (f(Y) /(M g(Y), 1)$.
\star Need $f(x) \leq M g(x)$ (except with negligible probability over x)

Rejection Sampling for Discrete Gaussian Distributions

- For param σ, sample probabilities must be proportional to

$$
\rho_{\sigma}(x)=\exp \left(-x^{2} /\left(2 \sigma^{2}\right)\right)
$$

Rejection Sampling for Discrete Gaussian Distributions

- For param σ, sample probabilities must be proportional to

$$
\rho_{\sigma}(x)=\exp \left(-x^{2} /\left(2 \sigma^{2}\right)\right)
$$

(1) Sample $Y \leftarrow[-\tau \sigma, \tau \sigma]$ uniformly.

Rejection Sampling for Discrete Gaussian Distributions

- For param σ, sample probabilities must be proportional to

$$
\rho_{\sigma}(x)=\exp \left(-x^{2} /\left(2 \sigma^{2}\right)\right)
$$

(1) Sample $Y \leftarrow[-\tau \sigma, \tau \sigma]$ uniformly.
(2) Accept with probability $\rho_{\sigma}(Y) / \rho_{\sigma(\mathbb{Z})}$, otherwise resample.

Rejection Sampling for Discrete Gaussian Distributions

- For param σ, sample probabilities must be proportional to

$$
\rho_{\sigma}(x)=\exp \left(-x^{2} /\left(2 \sigma^{2}\right)\right)
$$

(1) Sample $Y \leftarrow[-\tau \sigma, \tau \sigma]$ uniformly.
(2) Accept with probability $\rho_{\sigma}(Y) / \rho_{\sigma(\mathbb{Z})}$, otherwise resample.

- Problems:
\star High rejection rate
\star Computing ρ_{σ} to high precision is expensive

Bernoulli Rejection Sampling [DDLL' 12]

(a) from uniform distribution (repetition rate ≈ 10)

(b) from our adapted distribution (repetition rate ≈ 1.47)

- "Core sampler" of $D_{\sigma_{2}}^{+}$where $\sigma_{2}=\sqrt{1 /(2 \ln (2))}$.
* $\rho_{\sigma_{2}}(x)=2^{-x^{2}}, x \in \mathbb{Z}$
\star In DDLL'12, binary-style rejection sampler given access to uniform bits.

Bernoulli Rejection-Core Sampler

Sampling $D_{\sigma_{2}}^{+}$

Draw random bit b.
if random bit $b=0$ then return 0
for $i=1$ to ∞ do
Draw random bits b_{1}, \ldots, b_{k} for $k=2 i-1$
if $b_{1} \ldots, b_{k-1} \neq 0 \ldots 0$ then restart
if $b_{k}=0$ then return i

Bernoulli Rejection-Core Sampler

Sampling $D_{\sigma_{2}}^{+}$

Draw random bit b.
if random bit $b=0$ then return 0
for $i=1$ to ∞ do
Draw random bits b_{1}, \ldots, b_{k} for $k=2 i-1$
if $b_{1} \ldots, b_{k-1} \neq 0 \ldots 0$ then restart
if $b_{k}=0$ then return i

- Why it works: binary expansion of $\rho_{\sigma_{2}}(\{0, \ldots, j\})$ is

$$
\rho_{\sigma_{2}}(0, \ldots, j)=\sum_{i=0}^{j} 2^{-i^{2}}=1.100100001 \underbrace{0 \ldots 0}_{6} 1 \ldots \underbrace{0 \ldots 0}_{2(j-1)} 1
$$

Bernoulli Rejection (Full Algorithm)

Sampling $D_{k \sigma_{2}}^{+}, k \in \mathbb{Z}$

Sample $x \leftarrow D_{\sigma_{2}}^{+}$.
Sample $y \leftarrow\{0, \ldots, k-1\}$.
Let $z \leftarrow k x+y$.
Sample b with probability $\exp \left(-y(y+2 k x) /\left(2\left(k \sigma_{2}\right)^{2}\right)\right)$
if $b=0$ then restart.
return z.

Bernoulli Rejection (Full Algorithm)

Sampling $D_{k \sigma_{2}}^{+}, k \in \mathbb{Z}$

Sample $x \leftarrow D_{\sigma_{2}}^{+}$.
Sample $y \leftarrow\{0, \ldots, k-1\}$.
Let $z \leftarrow k x+y$.
Sample b with probability $\exp \left(-y(y+2 k x) /\left(2\left(k \sigma_{2}\right)^{2}\right)\right)$
if $b=0$ then restart.
return z.

- Sampling the exponential distribution can be done efficiently

Bernoulli Rejection (Full Algorithm)

Sampling $D_{k \sigma_{2}}^{+}, k \in \mathbb{Z}$

Sample $x \leftarrow D_{\sigma_{2}}^{+}$.
Sample $y \leftarrow\{0, \ldots, k-1\}$.
Let $z \leftarrow k x+y$.
Sample b with probability $\exp \left(-y(y+2 k x) /\left(2\left(k \sigma_{2}\right)^{2}\right)\right)$
if $b=0$ then restart.
return z.

- Sampling the exponential distribution can be done efficiently
\star Takes time $O(\log k)$.
\star Needs small lookup table with

$$
\mathrm{ET}[i]:=\exp \left(-2^{i} /\left(2\left(k \sigma_{2}\right)^{2}\right)\right), i \in[0, O(\log k)]
$$

Bernoulli Rejection-Timing Attacks

Sampling $D_{\sigma_{2}}^{+}$

Draw random bit b.
if random bit $b=0$ then return 0
for $i=1$ to ∞ do
Draw random bits b_{1}, \ldots, b_{k} for $k=2 i-1$
if $b_{1} \ldots, b_{k-1} \neq 0 \ldots 0$ then restart
if $b_{k}=0$ then return i

- Problem-Information Revealed by Timing Attacks!

Bernoulli Rejection-Timing Attacks

Sampling $D_{\sigma_{2}}^{+}$

Draw random bit b.
if random bit $b=0$ then return 0
for $i=1$ to ∞ do
Draw random bits b_{1}, \ldots, b_{k} for $k=2 i-1$
if $b_{1} \ldots, b_{k-1} \neq 0 \ldots 0$ then restart
if $b_{k}=0$ then return i

- Problem-Information Revealed by Timing Attacks!
- When for loop not entered, algorithm always outputs 0

Bernoulli Rejection-Timing Attacks

Sampling $D_{\sigma_{2}}^{+}$

Draw random bit b.
if random bit $b=0$ then return 0
for $i=1$ to ∞ do
Draw random bits b_{1}, \ldots, b_{k} for $k=2 i-1$
if $b_{1} \ldots, b_{k-1} \neq 0 \ldots 0$ then restart
if $b_{k}=0$ then return i

- Problem-Information Revealed by Timing Attacks!
- When for loop not entered, algorithm always outputs 0
- Algorithm for $D_{\sigma_{2}}^{+}$is slow in worst case.
- Can mitigate with batching

CDT Sampling

- For each $y \in[-\tau \sigma, \tau \sigma]$, compute λ bit precision

$$
p_{y}:=\operatorname{Pr}\left[x \leq y \mid x \leftarrow D_{\sigma}\right]
$$

CDT Sampling

- For each $y \in[-\tau \sigma, \tau \sigma]$, compute λ bit precision

$$
p_{y}:=\operatorname{Pr}\left[x \leq y \mid x \leftarrow D_{\sigma}\right]
$$

- Store in (large) table

CDT Sampling

- For each $y \in[-\tau \sigma, \tau \sigma]$, compute λ bit precision

$$
p_{y}:=\operatorname{Pr}\left[x \leq y \mid x \leftarrow D_{\sigma}\right]
$$

- Store in (large) table
- To sample D_{σ} :
* Sample (sufficient approximation of) uniform $r \in[0,1)$

CDT Sampling

- For each $y \in[-\tau \sigma, \tau \sigma]$, compute λ bit precision

$$
p_{y}:=\operatorname{Pr}\left[x \leq y \mid x \leftarrow D_{\sigma}\right]
$$

- Store in (large) table
- To sample D_{σ} :
\star Sample (sufficient approximation of) uniform $r \in[0,1$)
\star Binary search to find $y \in[-\tau \sigma, \tau \sigma]$ such that $r \in\left[p_{y-1}, p_{y}\right)$.

CDT Sampling

- For each $y \in[-\tau \sigma, \tau \sigma]$, compute λ bit precision

$$
p_{y}:=\operatorname{Pr}\left[x \leq y \mid x \leftarrow D_{\sigma}\right]
$$

- Store in (large) table
- To sample D_{σ} :
* Sample (sufficient approximation of) uniform $r \in[0,1$)
\star Binary search to find $y \in[-\tau \sigma, \tau \sigma]$ such that $r \in\left[p_{y-1}, p_{y}\right)$.
- Can be sped up with additional guide table

CDT Sampling

- For each $y \in[-\tau \sigma, \tau \sigma]$, compute λ bit precision

$$
p_{y}:=\operatorname{Pr}\left[x \leq y \mid x \leftarrow D_{\sigma}\right]
$$

- Store in (large) table
- To sample D_{σ} :
* Sample (sufficient approximation of) uniform $r \in[0,1$)
\star Binary search to find $y \in[-\tau \sigma, \tau \sigma]$ such that $r \in\left[p_{y-1}, p_{y}\right)$.
- Can be sped up with additional guide table
- Problems: Table is quite large; infeasible for constrained devices.

Knuth-Yao Sampling

Val	Prob (binary)
1	0.10010
2	0.00011
3	0.01011

Knuth-Yao Sampling

Val	Prob (binary)
1	0.10010
2	0.00011
3	0.01011

Knuth-Yao Sampling

Val	Prob (binary)
1	0.10010
2	0.00011
3	0.01011

Knuth-Yao Sampling

Val	Prob (binary)
1	0.10010
2	0.00011
3	0.01011

Knuth-Yao Sampling

Val	Prob (binary)
1	0.10010
2	0.00011
3	0.01011

Knuth-Yao Sampling

Val	Prob (binary)
1	0.10010
2	0.00011
3	0.01011

- Designed to minimize (average) number of bits required to sample

Knuth-Yao Sampling

Val	Prob (binary)
1	0.10010
2	0.00011
3	0.01011

- Designed to minimize (average) number of bits required to sample
- Theorem: Knuth-Yao requires at most 2 more than entropy of dist.

Knuth-Yao Sampling (Gaussians) [Dwarakanath/Galbraith]

x	$\sigma_{10}(x)$	Binary expansion of $\sigma_{10}(x)$
0	0.01994711	0.00000101000110110100
± 1	0.03969525	0.00001010001010010111
± 10	0.02419707	0.00000110001100011100
± 20	0.00539909	0.00000001011000011101
± 30	0.000043318	0.00000000000011010001
± 40	0.00001338	0.00000000000000001110

- Need to store table of probabilities, which is large.

Knuth-Yao Sampling (Gaussians) [Dwarakanath/Galbraith]

x	$\sigma_{10}(x)$	Binary expansion of $\sigma_{10}(x)$
0	0.01994711	0.00000101000110110100
± 1	0.03969525	0.00001010001010010111
± 10	0.02419707	0.00000110001100011100
± 20	0.00539909	0.00000001011000011101
± 30	0.000043318	0.000000000000111010001
± 40	0.00001338	0.00000000000000001110

- Need to store table of probabilities, which is large.
- Can cut down by performing Knuth-Yao in "blocks"

Knuth-Yao Sampling (Gaussians) [Dwarakanath/Galbraith]

x	$\sigma_{10}(x)$	Binary expansion of $\sigma_{10}(x)$
0	0.01994711	0.00000101000110110100
± 1	0.03969525	0.00001010001010010111
± 10	0.02419707	0.00000110001100011100
± 20	0.00539909	0.000000001011000011101
± 30	0.00044318	0.000000000000111010001
± 40	0.00001338	0.00000000000000001110

- Need to store table of probabilities, which is large.
- Can cut down by performing Knuth-Yao in "blocks"
(1) Partition into disjoint sets with almost equivalent probabilities

Knuth-Yao Sampling (Gaussians) [Dwarakanath/Galbraith]

x	$\sigma_{10}(x)$	Binary expansion of $\sigma_{10}(x)$
0	0.01994711	0.00000101000110110100
± 1	0.03969525	0.00001010001010010111
± 10	0.02419707	0.00000110001100011100
± 20	0.00539909	0.000000001011000011101
± 30	0.00044318	0.000000000000111010001
± 40	0.00001338	0.00000000000000001110

- Need to store table of probabilities, which is large.
- Can cut down by performing Knuth-Yao in "blocks"
(1) Partition into disjoint sets with almost equivalent probabilities
(2) Pick a set

Knuth-Yao Sampling (Gaussians) [Dwarakanath/Galbraith]

x	$\sigma_{10}(x)$	Binary expansion of $\sigma_{10}(x)$
0	0.01994711	0.00000101000110110100
± 1	0.03969525	0.00001010001010010111
± 10	0.02419707	0.00000110001100011100
± 20	0.00539909	0.000000001011000011101
± 30	0.00044318	0.000000000000111010001
± 40	0.00001338	0.00000000000000001110

- Need to store table of probabilities, which is large.
- Can cut down by performing Knuth-Yao in "blocks"
(1) Partition into disjoint sets with almost equivalent probabilities

2 Pick a set
(3) Perform Knuth-Yao within the set

Knuth-Yao Sampling (Gaussians) [Dwarakanath/Galbraith]

x	$\sigma_{10}(x)$	Binary expansion of $\sigma_{10}(x)$
0	0.01994711	0.00000101000110110100
± 1	0.03969525	0.00001010001010010111
± 10	0.02419707	0.00000110001100011100
± 20	0.00539909	0.000000001011000011101
± 30	0.00044318	0.000000000000111010001
± 40	0.00001338	0.00000000000000001110

- Need to store table of probabilities, which is large.
- Can cut down by performing Knuth-Yao in "blocks"
(1) Partition into disjoint sets with almost equivalent probabilities

2 Pick a set
(3) Perform Knuth-Yao within the set

- Knuth-Yao is not constant time!
- Can be mitigated by batching

Discrete Ziggurat Sampling

(1) Partition density function into m rectangles of equal probability

Discrete Ziggurat Sampling

(1) Partition density function into m rectangles of equal probability
(2) Choose a rectangle unif. at random

Discrete Ziggurat Sampling

(1) Partition density function into m rectangles of equal probability
(2) Choose a rectangle unif. at random
(3) Choose point $x^{\prime} \leftarrow\left[0, x_{i}\right]$

Discrete Ziggurat Sampling

(1) Partition density function into m rectangles of equal probability
(2) Choose a rectangle unif. at random
(3) Choose point $x^{\prime} \leftarrow\left[0, x_{i}\right]$
(1) If $x^{\prime} \leq x_{i-1}$, accept.
(2) Otherwise, do rejection sampling.

Discrete Ziggurat Sampling

(1) Partition density function into m rectangles of equal probability

2 Choose a rectangle unif. at random
(3) Choose point $x^{\prime} \leftarrow\left[0, x_{i}\right]$
(1) If $x^{\prime} \leq x_{i-1}$, accept.
(2) Otherwise, do rejection sampling.

- Sampling in discrete case requires some care

Discrete Ziggurat Sampling

(1) Partition density function into m rectangles of equal probability
(2) Choose a rectangle unif. at random
(3) Choose point $x^{\prime} \leftarrow\left[0, x_{i}\right]$
(1) If $x^{\prime} \leq x_{i-1}$, accept.
(2) Otherwise, do rejection sampling.

- Sampling in discrete case requires some care
* Partitioning can't be done by "area", but by probability

Discrete Ziggurat Sampling

(1) Partition density function into m rectangles of equal probability

2 Choose a rectangle unif. at random
(3) Choose point $x^{\prime} \leftarrow\left[0, x_{i}\right]$
(1) If $x^{\prime} \leq x_{i-1}$, accept.
(2) Otherwise, do rejection sampling.

- Sampling in discrete case requires some care
* Partitioning can't be done by "area", but by probability
- No clear vulnerability to timing attacks.

Batching

- Technique to make algorithm (e.g. Knuth-Yao) constant time

Batching

- Technique to make algorithm (e.g. Knuth-Yao) constant time
- Signatures need large (linear) number of Gaussian samples anyway

Batching

- Technique to make algorithm (e.g. Knuth-Yao) constant time
- Signatures need large (linear) number of Gaussian samples anyway
- Use Hoeffding-type bounds
* Each sample takes on average c random bits, max of n WHP
\star All n samples take combined time cn on average
\star With overwhelming prob, all n samples take at most $c n+n$ time.

Batching

- Technique to make algorithm (e.g. Knuth-Yao) constant time
- Signatures need large (linear) number of Gaussian samples anyway
- Use Hoeffding-type bounds
* Each sample takes on average c random bits, max of n WHP
\star All n samples take combined time cn on average
* With overwhelming prob, all n samples take at most $c n+n$ time.
- Have algorithm run in "time" proportional to $c n+n$ being used.

Batching

- Technique to make algorithm (e.g. Knuth-Yao) constant time
- Signatures need large (linear) number of Gaussian samples anyway
- Use Hoeffding-type bounds
* Each sample takes on average c random bits, max of n WHP
\star All n samples take combined time cn on average
* With overwhelming prob, all n samples take at most $c n+n$ time.
- Have algorithm run in "time" proportional to $c n+n$ being used.
- Pitfall: Making sure implementation is constant time is extremely hard

Walter-Micciancio Sampling

```
SAMPLEZ }\mp@subsup{\mp@code{b,k,max}}{}{(c,\sigma)
    x\leftarrow SAMPLEI(max)
    K\leftarrow\sqrt{}{\mp@subsup{\sigma}{}{2}-\mp@subsup{\overline{\sigma}}{}{2}}/\mp@subsup{\sigma}{\mathrm{ max}}{}
    c
    y\leftarrow\mp@subsup{\operatorname{SAMPLEC}}{b,\mp@subsup{\sigma}{0}{}}{(}(\mp@subsup{c}{}{\prime})
    return }
```

```
SampleI ( \(i\) )
    if \(i=0\)
        \(x \leftarrow\) SAMPLEB \(_{\sigma_{0}}(0)\)
        return \(x\)
    \(x_{1} \leftarrow \operatorname{SampleI}(i-1)\)
    \(x_{2} \leftarrow \operatorname{SampleI}(i-1)\)
    \(y=z_{i} x_{1}+\max \left(1, z_{i}-1\right) x_{2}\)
    return \(y\)
```

SampleI (i)

$$
\begin{aligned}
& \text { if } i=0 \\
& \quad x \leftarrow \operatorname{SAMPLEB}_{\sigma_{0}}(0) \\
& \quad \text { return } x \\
& x_{1} \leftarrow \operatorname{SAMPLEI}(i-1) \\
& x_{2} \leftarrow \operatorname{SAMPLEI}(i-1) \\
& y=z_{i} x_{1}+\max \left(1, z_{i}-1\right) x_{2} \\
& \text { return } y
\end{aligned}
$$

```
    \(\operatorname{SAMPLEC}_{b}\left(c \in b^{-k} \mathbb{Z}\right)\)
```

 \(\operatorname{SAMPLEC}_{b}\left(c \in b^{-k} \mathbb{Z}\right)\)
    ```
    \(\operatorname{SAMPLEC}_{b}\left(c \in b^{-k} \mathbb{Z}\right)\)
if \(k=0\)
if \(k=0\)
if \(k=0\)
        return 0
        return 0
        return 0
    \(g \leftarrow b^{-k+1}\) SAMPLEB \(_{\sigma_{0}}\left(b^{k-1} c\right)\)
    \(g \leftarrow b^{-k+1}\) SAMPLEB \(_{\sigma_{0}}\left(b^{k-1} c\right)\)
    \(g \leftarrow b^{-k+1}\) SAMPLEB \(_{\sigma_{0}}\left(b^{k-1} c\right)\)
    return \(g+\operatorname{SAMPLEC}_{b}\left(c-g \in b^{-k+1} \mathbb{Z}\right)\)
```

 return \(g+\operatorname{SAMPLEC}_{b}\left(c-g \in b^{-k+1} \mathbb{Z}\right)\)
    ```
    return \(g+\operatorname{SAMPLEC}_{b}\left(c-g \in b^{-k+1} \mathbb{Z}\right)\)
```


Walter-Micciancio Sampling

```
SAMPLEZ }\mp@subsup{\mp@code{b,k,max}}{}{(c,\sigma)
    x\leftarrow SAMPLEI(max)
    K\leftarrow\sqrt{}{\mp@subsup{\sigma}{}{2}-\mp@subsup{\overline{\sigma}}{}{2}}/\mp@subsup{\sigma}{\mathrm{ max}}{}
    c
    y\leftarrow\mp@subsup{\operatorname{SAMPLEC}}{b,\mp@subsup{\sigma}{0}{}}{(}(\mp@subsup{c}{}{\prime})
    return y
```

```
SampleI ( \(i\) )
    if \(i=0\)
        \(x \leftarrow \operatorname{SAMPLEB}_{\sigma_{0}}(0)\)
        return \(x\)
    \(x_{1} \leftarrow \operatorname{SampleI}(i-1)\)
    \(x_{2} \leftarrow \operatorname{SampleI}(i-1)\)
    \(y=z_{i} x_{1}+\max \left(1, z_{i}-1\right) x_{2}\)
return \(y\)

SAMPleI ( \(i\) )
\[
\begin{aligned}
& \text { if } i=0 \\
& \quad x \leftarrow \operatorname{SAMPLEB}_{\sigma_{0}}(0) \\
& \quad \text { return } x \\
& x_{1} \leftarrow \operatorname{SAMPLEI}(i-1) \\
& x_{2} \leftarrow \operatorname{SAMPLEI}(i-1) \\
& y=z_{i} x_{1}+\max \left(1, z_{i}-1\right) x_{2} \\
& \text { return } y
\end{aligned}
\]
```

 \(\operatorname{SAMPLEC}_{b}\left(c \in b^{-k} \mathbb{Z}\right)\)
    ```
    \(\operatorname{SAMPLEC}_{b}\left(c \in b^{-k} \mathbb{Z}\right)\)
    if \(k=0\)
    if \(k=0\)
        return 0
        return 0
    \(g \leftarrow b^{-k+1}\) SAMPLEB \(_{\sigma_{0}}\left(b^{k-1} c\right)\)
    \(g \leftarrow b^{-k+1}\) SAMPLEB \(_{\sigma_{0}}\left(b^{k-1} c\right)\)
    return \(g+\operatorname{SAMPLEC}_{b}\left(c-g \in b^{-k+1} \mathbb{Z}\right)\)
```

```
    return \(g+\operatorname{SAMPLEC}_{b}\left(c-g \in b^{-k+1} \mathbb{Z}\right)\)
```

```

Algorithm 1: A sampling algorithm for \(\mathscr{D}_{\mathbb{Z}+c, \sigma}\) for arbitrary \(c\) and \(\sigma\). Definitions for \(z_{i}\) and \(\sigma_{i}\) as in (3) and (4) and \(\bar{\sigma}\) as in (5). SampleB is an arbitrary base sampler for fixed \(\sigma_{0}\) and small number of cosets \(c+\mathbb{Z}\), where \(c \in \mathbb{Z} / b\).
\[
z_{i}=\left\lfloor\sigma_{i-1} / \sqrt{2 \eta_{\epsilon}(\mathbb{Z})}\right\rfloor, \sigma_{i}^{2}=\left(z_{i}^{2}+\max \left(\left(z_{i}-1\right)^{2}, 1\right)\right) \sigma_{i-1}^{2}
\]
- New algorithm with constant-time online phase
- Works by recursively combining samples with smaller \(\sigma\) s.

\section*{Walter-Micciancio Sampling}
```

SAMPLEZ }\mp@subsup{\mp@code{b,k,max}}{}{(c,\sigma)
x\leftarrowSAMPLEI(max)
K\leftarrow\sqrt{}{\mp@subsup{\sigma}{}{2}-\mp@subsup{\overline{\sigma}}{}{2}}/\mp@subsup{\sigma}{\mathrm{ max}}{}
c
y\leftarrow\mp@subsup{\operatorname{SAMPLEC}}{b,\mp@subsup{\sigma}{0}{}}{(}(\mp@subsup{c}{}{\prime})
return y

```

SampleI \((i)\)
if \(i=0\)
return \(g+\operatorname{SAMPLEC}_{b}\left(c-g \in b^{-k+1} \mathbb{Z}\right)\)
\(x \leftarrow \mathrm{SAMPLEB}_{\sigma_{0}}(0)\)
return \(x\)
\(x_{1} \leftarrow \operatorname{SampleI}(i-1)\)
\(\operatorname{SampleC}_{b}\left(c \in b^{-k} \mathbb{Z}\right)\)
if \(k=0\) return 0
\(g \leftarrow b^{-k+1}\) SAMPLEB \(_{\sigma_{0}}\left(b^{k-1} c\right)\) return \(y\)
\(x_{2} \leftarrow \operatorname{SampleI}(i-1)\)
\(y=z_{i} x_{1}+\max \left(1, z_{i}-1\right) x_{2}\)
```

SampleI (i)

```
SampleI ( \(i\) )
    if \(i=0\)
    if \(i=0\)
        \(x \leftarrow \operatorname{SAMPLEB}_{\sigma_{0}}(0)\)
        \(x \leftarrow \operatorname{SAMPLEB}_{\sigma_{0}}(0)\)
        return \(x\)
        return \(x\)
    \(x_{1} \leftarrow \operatorname{SampleI}(i-1)\)
    \(x_{1} \leftarrow \operatorname{SampleI}(i-1)\)
    \(x_{2} \leftarrow \operatorname{SAMPLEI}(i-1) \quad g \leftarrow b^{-k+1} \operatorname{SAMPLEB}_{\sigma_{0}}\left(b^{k-1} c\right)\)
    \(x_{2} \leftarrow \operatorname{SAMPLEI}(i-1) \quad g \leftarrow b^{-k+1} \operatorname{SAMPLEB}_{\sigma_{0}}\left(b^{k-1} c\right)\)
    \(y=z_{i} x_{1}+\max \left(1, z_{i}-1\right) x_{2}\)
    \(y=z_{i} x_{1}+\max \left(1, z_{i}-1\right) x_{2}\)
    return \(y\)
```

 return \(y\)
    ```

Algorithm 1: A sampling algorithm for \(\mathscr{D}_{\mathbb{Z}+c, \sigma}\) for arbitrary \(c\) and \(\sigma\). Definitions for \(z_{i}\) and \(\sigma_{i}\) as in (3) and (4) and \(\bar{\sigma}\) as in (5). SampleB is an arbitrary base sampler for fixed \(\sigma_{0}\) and small number of cosets \(c+\mathbb{Z}\), where \(c \in \mathbb{Z} / b\).
\[
z_{i}=\left\lfloor\sigma_{i-1} / \sqrt{2 \eta_{\epsilon}(\mathbb{Z})}\right\rfloor, \sigma_{i}^{2}=\left(z_{i}^{2}+\max \left(\left(z_{i}-1\right)^{2}, 1\right)\right) \sigma_{i-1}^{2}
\]
- New algorithm with constant-time online phase
- Works by recursively combining samples with smaller \(\sigma\) s.
- Assumes access to \(D_{\mathbb{Z}+c, \sigma_{0}}\) with small \(\sigma_{0} \geq \sqrt{2} \eta_{\epsilon}(\mathbb{Z})\)

\section*{Walter-Micciancio Sampling}
```

SAMPLEZ }\mp@subsup{\mp@code{b,k,max}}{(c,\sigma)}{
x\leftarrowSAMPLEI(max)
K\leftarrow\sqrt{}{\mp@subsup{\sigma}{}{2}-\mp@subsup{\overline{\sigma}}{}{2}}/\mp@subsup{\sigma}{\mathrm{ max}}{}
c}\leftarrow\lfloor\lfloorc+Kx\mp@subsup{\rceil}{k}{
y\leftarrow\mp@subsup{\operatorname{SAMPLEC}}{b,\mp@subsup{\sigma}{0}{}}{(}(\mp@subsup{c}{}{\prime})
return y

```

SampleI \((i)\)
if \(i=0\)
\(x \leftarrow\) SAMPLEB \(_{\sigma_{0}}(0)\)
return \(x\)
\(x_{1} \leftarrow \operatorname{SAMPLEI}(i-1)\)
\(x_{2} \leftarrow \operatorname{SAMPLEI}(i-1)\)
\(y=z_{i} x_{1}+\max \left(1, z_{i}-1\right) x_{2}\) return \(y\)
```

Samplei (i)

```
Samplei \((i)\)
    if \(i=0\)
    if \(i=0\)
        \(x \leftarrow \operatorname{SAMPLEB}_{\sigma_{0}}(0)\)
        \(x \leftarrow \operatorname{SAMPLEB}_{\sigma_{0}}(0)\)
        return \(x\)
        return \(x\)
    \(x_{1} \leftarrow \operatorname{SampleI}(i-1)\)
    \(x_{1} \leftarrow \operatorname{SampleI}(i-1)\)
    \(x_{2} \leftarrow \operatorname{SAMPLEI}(i-1) \quad g \leftarrow b^{-k+1} \operatorname{SAMPLEB}_{\sigma_{0}}\left(b^{k-1} c\right)\)
    \(x_{2} \leftarrow \operatorname{SAMPLEI}(i-1) \quad g \leftarrow b^{-k+1} \operatorname{SAMPLEB}_{\sigma_{0}}\left(b^{k-1} c\right)\)
    \(y=z_{i} x_{1}+\max \left(1, z_{i}-1\right) x_{2}\)
    \(y=z_{i} x_{1}+\max \left(1, z_{i}-1\right) x_{2}\)
    return \(y\)
```

 return \(y\)
    ```

Algorithm 1: A sampling algorithm for \(\mathscr{D}_{\mathbb{Z}+c, \sigma}\) for arbitrary \(c\) and \(\sigma\). Definitions for \(z_{i}\) and \(\sigma_{i}\) as in (3) and (4) and \(\bar{\sigma}\) as in (5). SampleB is an arbitrary base sampler for fixed \(\sigma_{0}\) and small number of cosets \(c+\mathbb{Z}\), where \(c \in \mathbb{Z} / b\).
\[
z_{i}=\left\lfloor\sigma_{i-1} / \sqrt{2 \eta_{\epsilon}(\mathbb{Z})}\right\rfloor, \sigma_{i}^{2}=\left(z_{i}^{2}+\max \left(\left(z_{i}-1\right)^{2}, 1\right)\right) \sigma_{i-1}^{2}
\]
- New algorithm with constant-time online phase
- Works by recursively combining samples with smaller \(\sigma\) s.
- Assumes access to \(D_{\mathbb{Z}+c, \sigma_{0}}\) with small \(\sigma_{0} \geq \sqrt{2} \eta_{\epsilon}(\mathbb{Z})\)
\(\star\) Authors suggest generating these offline in "idle times"
^ Doesn't seem plausible for constrained devices
\(\star\) Relies on idle time (frequent queries could eliminate it)

\section*{Walter-Micciancio (Runtime)}


Figure 1: Time memory trade-off for combination sampler ("Convolved KY") and discrete Ziggurat compared to Bernoulli-type sampling for \(\sigma \in\left\{2^{5}, 2^{10}, 2^{14}, 2^{17}\right\} \sqrt{2 \pi}\). Knuth-Yao corresponds to right most point of "Convolved KY".

\section*{Even Tables Are Vulnerable - To Cache Attacks}
- Table access is constant-time. Or is it??

\section*{Even Tables Are Vulnerable - To Cache Attacks}
- Table access is constant-time. Or is it??
- FLUSH+RELOAD attack uses clflush instruction (on x86-64)

\section*{Even Tables Are Vulnerable - To Cache Attacks}
- Table access is constant-time. Or is it??
- FLUSH+RELOAD attack uses clflush instruction (on x86-64)
(1) Evicts memory block from cache,
(2) Lets victim execute
(3) Measures time to access same memory block

\section*{Even Tables Are Vulnerable - To Cache Attacks}
- Table access is constant-time. Or is it??
- FLUSH+RELOAD attack uses clflush instruction (on x86-64)
(1) Evicts memory block from cache,
(2) Lets victim execute
(3) Measures time to access same memory block
- Flush, Gauss and Reload uses this on Gaussian sampling in BLISS

\section*{Even Tables Are Vulnerable - To Cache Attacks}
- Table access is constant-time. Or is it??
- FLUSH+RELOAD attack uses clflush instruction (on x86-64)
(1) Evicts memory block from cache,
(2) Lets victim execute
(3) Measures time to access same memory block
- Flush, Gauss and Reload uses this on Gaussian sampling in BLISS
- Requires roughly 3000 signatures

\section*{Even Tables Are Vulnerable - To Cache Attacks}
- Table access is constant-time. Or is it??
- FLUSH+RELOAD attack uses clflush instruction (on x86-64)
(1) Evicts memory block from cache,
(2) Lets victim execute
(3) Measures time to access same memory block
- Flush, Gauss and Reload uses this on Gaussian sampling in BLISS
- Requires roughly 3000 signatures
- FLUSH+RELOAD must be run on same system as crypto

\section*{Can We Avoid Discrete Gaussians?}
- Seems like it should be easier for SIS-based cryptography

\section*{Can We Avoid Discrete Gaussians?}
- Seems like it should be easier for SIS-based cryptography
* Unlike LWE, SIS problem is not defined with a noise distribution

\section*{Can We Avoid Discrete Gaussians?}
- Seems like it should be easier for SIS-based cryptography
* Unlike LWE, SIS problem is not defined with a noise distribution
* Just need to find short solution

\section*{Can We Avoid Discrete Gaussians?}
- Seems like it should be easier for SIS-based cryptography
* Unlike LWE, SIS problem is not defined with a noise distribution
* Just need to find short solution
- Discrete Gaussians do give tightest bounds, but how much tighter?

\section*{Can We Avoid Discrete Gaussians?}
- Seems like it should be easier for SIS-based cryptography
* Unlike LWE, SIS problem is not defined with a noise distribution
* Just need to find short solution
- Discrete Gaussians do give tightest bounds, but how much tighter?
- Would be nice to see concrete implementations without them```

